Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593125

RESUMEN

Inflammation in ulcerative colitis is typically restricted to the mucosal layer of distal gut. Disrupted mucus barrier, coupled with microbial dysbiosis, has been reported to occur prior to the onset of inflammation. Here, we show the involvement of vesicular trafficking protein Rab7 in regulating the colonic mucus system. We identified a lowered Rab7 expression in goblet cells of colon during human and murine colitis. In vivo Rab7 knocked down mice (Rab7KD) displayed a compromised mucus layer, increased microbial permeability, and depleted gut microbiota with enhanced susceptibility to dextran sodium-sulfate induced colitis. These abnormalities emerged owing to altered mucus composition, as revealed by mucus proteomics, with increased expression of mucin protease chloride channel accessory 1 (CLCA1). Mechanistically, Rab7 maintained optimal CLCA1 levels by controlling its lysosomal degradation, a process that was dysregulated during colitis. Overall, our work establishes a role for Rab7-dependent control of CLCA1 secretion required for maintaining mucosal homeostasis.


Asunto(s)
Colitis , Células Caliciformes , Animales , Humanos , Ratones , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colon/metabolismo , Modelos Animales de Enfermedad , Células Caliciformes/metabolismo , Homeostasis , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL
2.
Nat Cancer ; 4(5): 629-647, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37217651

RESUMEN

Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Presentación de Antígeno , Neoplasias Pulmonares/patología , Medicina de Precisión , Complejo de la Endopetidasa Proteasomal/metabolismo , Microambiente Tumoral
3.
Autophagy Rep ; 2(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064812

RESUMEN

Many neurodegenerative diseases, including Huntington's disease (HD) and Alzheimer's disease (AD), occur due to an accumulation of aggregation-prone proteins, which results in neuronal death. Studies in animal and cell models show that reducing the levels of these proteins mitigates disease phenotypes. We previously reported a small molecule, NCT-504, which reduces cellular levels of mutant huntingtin (mHTT) in patient fibroblasts as well as mouse striatal and cortical neurons from an HdhQ111 mutant mouse. Here, we show that NCT-504 has a broader potential, and in addition reduces levels of Tau, a protein associated with Alzheimer's disease, as well as other tauopathies. We find that in untreated cells, Tau and mHTT are degraded via autophagy. Notably, treatment with NCT-504 diverts these proteins to multivesicular bodies (MVB) and the ESCRT pathway. Specifically, NCT-504 causes a proliferation of endolysosomal organelles including MVB, and an enhanced association of mHTT and Tau with endosomes and MVB. Importantly, depletion of proteins that act late in the ESCRT pathway blocked NCT-504 dependent degradation of Tau. Moreover, NCT-504-mediated degradation of Tau occurred in cells where Atg7 is depleted, which indicates that this pathway is independent of canonical autophagy. Together, these studies reveal that upregulation of traffic through an ESCRT-dependent MVB pathway may provide a therapeutic approach for neurodegenerative diseases.

4.
Nat Immunol ; 24(4): 585-594, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36941399

RESUMEN

Unlike other nucleotide oligomerization domain-like receptors, Nlrp10 lacks a canonical leucine-rich repeat domain, suggesting that it is incapable of signal sensing and inflammasome formation. Here we show that mouse Nlrp10 is expressed in distal colonic intestinal epithelial cells (IECs) and modulated by the intestinal microbiome. In vitro, Nlrp10 forms an Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent, m-3M3FBS-activated, polyinosinic:polycytidylic acid-modulated inflammasome driving interleukin-1ß and interleukin-18 secretion. In vivo, Nlrp10 signaling is dispensable during steady state but becomes functional during autoinflammation in antagonizing mucosal damage. Importantly, whole-body or conditional IEC Nlrp10 depletion leads to reduced IEC caspase-1 activation, coupled with enhanced susceptibility to dextran sodium sulfate-induced colitis, mediated by altered inflammatory and healing programs. Collectively, understanding Nlrp10 inflammasome-dependent and independent activity, regulation and possible human relevance might facilitate the development of new innate immune anti-inflammatory interventions.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Inflamasomas , Ratones , Humanos , Animales , Inflamasomas/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Apoptosis , Caspasa 1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-1beta/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
6.
Mol Cell Proteomics ; 22(4): 100519, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36828127

RESUMEN

Posttranslational spliced peptides (PTSPs) are a unique class of peptides that have been found to be presented by HLA class-I molecules in cancer. Thus far, no consensus has been reached on the proportion of PTSPs in the immunopeptidome, with estimates ranging from 2% to as high as 45% and stirring significant debate. Furthermore, the role of the HLA class-II pathway in PTSP presentation has been studied only in diabetes. Here, we exploit our large-scale cancer peptidomics database and our newly devised pipeline for filtering spliced peptide predictions to identify recurring spliced peptides, both for HLA class-I and class-II complexes. Our results indicate that HLA class-I-spliced peptides account for a low percentage of the immunopeptidome (less than 3.1%) yet are larger in number relative to other types of identified aberrant peptides. Therefore, spliced peptides significantly contribute to the repertoire of presented peptides in cancer cells. In addition, we identified HLA class-II-bound spliced peptides, but to a lower extent (less than 0.5%). The identified spliced peptides include cancer- and immune-associated genes, such as the MITF oncogene, DAPK1 tumor suppressor, and HLA-E, which were validated using synthetic peptides. The potential immunogenicity of the DAPK1- and HLA-E-derived PTSPs was also confirmed. In addition, a reanalysis of our published mouse single-cell clone immunopeptidome dataset showed that most of the spliced peptides were found repeatedly in a large number of the single-cell clones. Establishing a novel search-scheme for the discovery and evaluation of recurring PTSPs among cancer patients may assist in identifying potential novel targets for immunotherapy.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Neoplasias , Animales , Ratones , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias/genética , Empalme del ARN , Péptidos/metabolismo
7.
Nat Biotechnol ; 41(2): 239-251, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36203013

RESUMEN

Post-translational modification (PTM) of antigens provides an additional source of specificities targeted by immune responses to tumors or pathogens, but identifying antigen PTMs and assessing their role in shaping the immunopeptidome is challenging. Here we describe the Protein Modification Integrated Search Engine (PROMISE), an antigen discovery pipeline that enables the analysis of 29 different PTM combinations from multiple clinical cohorts and cell lines. We expanded the antigen landscape, uncovering human leukocyte antigen class I binding motifs defined by specific PTMs with haplotype-specific binding preferences and revealing disease-specific modified targets, including thousands of new cancer-specific antigens that can be shared between patients and across cancer types. Furthermore, we uncovered a subset of modified peptides that are specific to cancer tissue and driven by post-translational changes that occurred in the tumor proteome. Our findings highlight principles of PTM-driven antigenicity, which may have broad implications for T cell-mediated therapies in cancer and beyond.


Asunto(s)
Neoplasias , Procesamiento Proteico-Postraduccional , Humanos , Procesamiento Proteico-Postraduccional/genética , Péptidos/genética , Antígenos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias/genética
8.
Cell ; 185(7): 1208-1222.e21, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35305314

RESUMEN

The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.


Asunto(s)
Anticuerpos Antineoplásicos , Neoplasias Ováricas , Anticuerpos Monoclonales , Autoanticuerpos , Autoantígenos , Femenino , Humanos , Neoplasias Ováricas/genética , Microambiente Tumoral
9.
Cells ; 11(5)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269404

RESUMEN

The Golgi apparatus is a central hub for cellular protein trafficking and signaling. Golgi structure and function is tightly coupled and undergoes dynamic changes in health and disease. A crucial requirement for maintaining Golgi homeostasis is the ability of the Golgi to target aberrant, misfolded, or otherwise unwanted proteins to degradation. Recent studies have revealed that the Golgi apparatus may degrade such proteins through autophagy, retrograde trafficking to the ER for ER-associated degradation (ERAD), and locally, through Golgi apparatus-related degradation (GARD). Here, we review recent discoveries in these mechanisms, highlighting the role of the Golgi in maintaining cellular homeostasis.


Asunto(s)
Aparato de Golgi , Proteínas de la Membrana , Aparato de Golgi/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Proteolisis
10.
FEBS J ; 289(12): 3304-3316, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33914417

RESUMEN

Histones constitute the primary protein building blocks of the chromatin and play key roles in the dynamic control of chromatin compaction and epigenetic regulation. Histones are regulated by intricate mechanisms that alter their functionality and stability, thereby expanding the regulation of chromatin-transacting processes. As such, histone degradation is tightly regulated to provide spatiotemporal control of cellular histone abundance. While several mechanisms have been implicated in controlling histone stability, here, we discuss proteasome-dependent degradation of histones and the protein modifications that are associated with it. We then highlight specific cellular and physiological states that are associated with altered histone degradation by cellular proteasomes.


Asunto(s)
Cromatina , Complejo de la Endopetidasa Proteasomal , Plasticidad de la Célula , Cromatina/genética , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
11.
Mol Cell ; 82(1): 106-122.e9, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34875212

RESUMEN

The fidelity of the early embryonic program is underlined by tight regulation of the chromatin. Yet, how the chromatin is organized to prohibit the reversal of the developmental program remains unclear. Specifically, the totipotency-to-pluripotency transition marks one of the most dramatic events to the chromatin, and yet, the nature of histone alterations underlying this process is incompletely characterized. Here, we show that linker histone H1 is post-translationally modulated by SUMO2/3, which facilitates its fixation onto ultra-condensed heterochromatin in embryonic stem cells (ESCs). Upon SUMOylation depletion, the chromatin becomes de-compacted and H1 is evicted, leading to totipotency reactivation. Furthermore, we show that H1 and SUMO2/3 jointly mediate the repression of totipotent elements. Lastly, we demonstrate that preventing SUMOylation on H1 abrogates its ability to repress the totipotency program in ESCs. Collectively, our findings unravel a critical role for SUMOylation of H1 in facilitating chromatin repression and desolation of the totipotent identity.


Asunto(s)
Blastocisto/metabolismo , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Animales , Blastocisto/citología , Cromatina/genética , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Histonas/genética , Humanos , Ratones , Fenotipo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitinas/genética , Ubiquitinas/metabolismo
12.
Biomolecules ; 11(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34356615

RESUMEN

The gut epithelial barrier provides the first line of defense protecting the internal milieu from the environment. To circumvent the exposure to constant challenges such as pathogenic infections and commensal bacteria, epithelial and immune cells at the gut barrier require rapid and efficient means to dynamically sense and respond to stimuli. Numerous studies have highlighted the importance of proteolysis in maintaining homeostasis and adapting to the dynamic changes of the conditions in the gut environment. Primarily, proteolytic activities that are involved in immune regulation and inflammation have been examined in the context of the lysosome and inflammasome activation. Yet, the key to cellular and tissue proteostasis is the ubiquitin-proteasome system, which tightly regulates fundamental aspects of inflammatory signaling and protein quality control to provide rapid responses and protect from the accumulation of proteotoxic damage. In this review, we discuss proteasome-dependent regulation of the gut and highlight the pathophysiological consequences of the disarray of proteasomal control in the gut, in the context of aberrant inflammatory disorders and tumorigenesis.


Asunto(s)
Mucosa Intestinal , Complejo de la Endopetidasa Proteasomal , Proteolisis , Transducción de Señal/inmunología , Animales , Activación Enzimática/inmunología , Humanos , Inflamación/enzimología , Mucosa Intestinal/enzimología , Mucosa Intestinal/inmunología , Lisosomas/enzimología , Lisosomas/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo
13.
J Mol Biol ; 433(21): 167219, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464654

RESUMEN

Protein modification by ubiquitin or SUMO can alter the function, stability or activity of target proteins. Previous studies have identified thousands of substrates that were modified by ubiquitin or SUMO on the same lysine residue. However, it remains unclear whether such overlap could result from a mere higher solvent accessibility, whether proteins containing those sites are associated with specific functional traits, and whether selectively perturbing their modification by ubiquitin or SUMO could result in different phenotypic outcomes. Here, we mapped reported lysine modification sites across the human proteome and found an enrichment of sites reported to be modified by both ubiquitin and SUMO. Our analysis uncovered thousands of proteins containing such sites, which we term Sites of Alternative Modification (SAMs). Among more than 36,000 sites reported to be modified by SUMO, 51.8% have also been reported to be modified by ubiquitin. SAM-containing proteins are associated with diverse biological functions including cell cycle, DNA damage, and transcriptional regulation. As such, our analysis highlights numerous proteins and pathways as putative targets for further elucidating the crosstalk between ubiquitin and SUMO. Comparing the biological and biochemical properties of SAMs versus other non-overlapping modification sites revealed that these sites were associated with altered cellular localization or abundance of their host proteins. Lastly, using S. cerevisiae as model, we show that mutating the SAM motif in a protein can influence its ubiquitination as well as its localization and abundance.


Asunto(s)
Ciclo Celular/genética , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Biología Computacional/métodos , Daño del ADN , Humanos , Lisina/metabolismo , Mutagénesis Sitio-Dirigida , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación , Transcripción Genética , Ubiquitina/genética
14.
Mol Cell ; 80(5): 876-891.e6, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33217318

RESUMEN

Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/genética , Línea Celular Tumoral , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/patología , Dipéptidos/genética , Dipéptidos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Ratones , Proteómica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
15.
Nat Commun ; 11(1): 409, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964869

RESUMEN

The Golgi is a dynamic organelle whose correct assembly is crucial for cellular homeostasis. Perturbations in Golgi structure are associated with numerous disorders from neurodegeneration to cancer. However, whether and how dispersal of the Golgi apparatus is actively regulated under stress, and the consequences of Golgi dispersal, remain unknown. Here we demonstrate that 26S proteasomes are associated with the cytosolic surface of Golgi membranes to facilitate Golgi Apparatus-Related Degradation (GARD) and degradation of GM130 in response to Golgi stress. The degradation of GM130 is dependent on p97/VCP and 26S proteasomes, and required for Golgi dispersal. Finally, we show that perturbation of Golgi homeostasis induces cell death of multiple myeloma in vitro and in vivo, offering a therapeutic strategy for this malignancy. Taken together, this work reveals a mechanism of Golgi-localized proteasomal degradation, providing a functional link between proteostasis control and Golgi architecture, which may be critical in various secretion-related pathologies.


Asunto(s)
Aparato de Golgi/metabolismo , Ionóforos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteostasis/fisiología , Animales , Apoptosis/efectos de los fármacos , Autoantígenos/metabolismo , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Aparato de Golgi/efectos de los fármacos , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Ionóforos/farmacología , Proteínas de la Membrana/metabolismo , Ratones , Monensina/farmacología , Monensina/uso terapéutico , Mieloma Múltiple/patología , Proteolisis/efectos de los fármacos , Proteostasis/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Proteína que Contiene Valosina/metabolismo
16.
ACS Chem Biol ; 14(12): 2538-2545, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31794190

RESUMEN

FAT10 is a ubiquitin-like protein suggested to target proteins for proteasomal degradation. It is highly upregulated upon pro-inflammatory cytokines, namely, TNFα, IFNγ, and IL6, and was found to be highly expressed in various epithelial cancers. Evidence suggests that FAT10 is involved in cancer development and may have a pro-tumorigenic role. However, its biological role is still unclear, as well as its biochemical and cellular regulation. To identify pathways underlying FAT10 expression in the context of pro-inflammatory stimulation, which characterizes the cancerous environment, we implemented a phenotypic transcriptional reporter screen with a library of annotated compounds. We identified AZ960, a potent JAK2 inhibitor, which significantly downregulates FAT10 under pro-inflammatory cytokines induction, in an NFκB-independent manner. We validated JAK2 as a major regulator of FAT10 expression via knockdown, and we suggest that the transcriptional effects are mediated through pSTAT1/3/5. Overall, we have elucidated a pathway regulating FAT10 transcription and discovered a tool compound to chemically downregulate FAT10 expression, and to further study its biology.


Asunto(s)
Janus Quinasa 2/metabolismo , Ubiquitinas/metabolismo , Células A549 , Aminopiridinas/farmacología , Células HEK293 , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología
17.
Expert Rev Proteomics ; 16(8): 711-716, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31387416

RESUMEN

Introduction: Degradation of proteins by cellular proteasomes is critical for the fidelity of protein homeostasis and proper cell function. Indeed, perturbations in proteasome function, as well as the degradation of specific substrates, are associated with a variety of human diseases. Yet, monitoring and analyzing protein degradation in a high throughput manner in physiology and pathology remains limited. Areas covered: Here we discuss several of the recently developed mass spectrometry-based methods for studying proteasome-mediated cellular degradation and discuss their advantages and limitations. We highlight Mass Spectrometry Analysis of Proteolytic Peptides (MAPP), a method designed to purify and identify proteasome-cleaved cellular proteins as a novel approach in molecular and clinical profiling of human disease. Expert opinion: The recent improvement of proteomics technologies now offers an unprecedented ability to study disease in clinical settings. Expanding clinical studies to include the degradation landscape will provide a new resolution to complement the cellular proteome. In turn, this holds promise to provide both new disease targets and novel peptide biomarkers which will further enhance personalized proteomics.


Asunto(s)
Espectrometría de Masas/métodos , Proteoma/metabolismo , Animales , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica/métodos , Ubiquitina/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-31322460

RESUMEN

Introduction: Degradation of proteins by cellular proteasomes is critical for the fidelity of protein homeostasis and proper cell function. Indeed, perturbations in proteasome function, as well as the degradation of specific substrates, are associated with a variety of human diseases. Yet, monitoring and analyzing protein degradation in a high throughput manner in physiology and pathology remains limited. Areas Covered: Here we discuss several of the recently developed mass spectrometry-based methods for studying proteasome-mediated cellular degradation and discuss their advantages and limitations. We highlight Mass Spectrometry Analysis of Proteolytic Peptides (MAPP), a method designed to purify and identify proteasome-cleaved cellular proteins as a novel approach in molecular and clinical profiling of human disease. Expert Opinion: The recent improvement of proteomics technologies now offers an unprecedented ability to study disease in clinical settings. Expanding clinical studies to include the degradation landscape will provide a new resolution to complement the cellular proteome. In turn, this holds promise to provide both new disease targets and novel peptide biomarkers which will further enhance personalized proteomics.

19.
Front Immunol ; 10: 141, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30833945

RESUMEN

Antigen presentation on HLA molecules is a major mechanism by which the immune system monitors self and non-self-recognition. Importantly, HLA-I presentation has gained much attention through its role in eliciting anti-tumor immunity. Several determinants controlling the peptides presented on HLA have been uncovered, mainly through the study of model substrates and large-scale immunopeptidome analyses. These determinants include the relative abundances of proteins in the cell, the stability or turnover rate of these proteins and the binding affinities of a given peptide to the HLA haplotypes found in a cell. However, the regulatory principles involved in selection and regulation of specific antigens in response to tumor pro-inflammatory signals remain largely unknown. Here, we chose to examine the effect that TNFα and IFNγ stimulation may exert on the immunopeptidome landscape of lung cancer cells. We show that the expression of many of the proteins involved in the class I antigen presentation pathway are changed by pro-inflammatory cytokines. Further, we could show that increased expression of the HLA-B allomorph drives a significant change in HLA-bound antigens, independently of the significant changes observed in the cellular proteome. Finally, we observed increased HLA-B levels in correlation with tumor infiltration across the TCGA lung cancer cohorts. Taken together, our results suggest that the immunopeptidome landscape should be examined in the context of anti-tumor immunity whereby signals in the microenvironment may be critical in shaping and modulating this important aspect of host-tumor interactions.


Asunto(s)
Antígenos HLA-B/inmunología , Interferón gamma/farmacología , Neoplasias Pulmonares/inmunología , Péptidos/inmunología , Factor de Necrosis Tumoral alfa/farmacología , Células A549 , Humanos , Proteoma
20.
Nat Biotechnol ; 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30346940

RESUMEN

Cellular function is critically regulated through degradation of substrates by the proteasome. To enable direct analysis of naturally cleaved proteasomal peptides under physiological conditions, we developed mass spectrometry analysis of proteolytic peptides (MAPP), a method for proteasomal footprinting that allows for capture, isolation and analysis of proteasome-cleaved peptides. Application of MAPP to cancer cell lines as well as primary immune cells revealed dynamic modulation of the cellular degradome in response to various stimuli, such as proinflammatory signals. Further, we performed analysis of minute amounts of clinical samples by studying cells from the peripheral blood of patients with systemic lupus erythematosus (SLE). We found increased degradation of histones in patient immune cells, thereby suggesting a role of aberrant proteasomal degradation in the pathophysiology of SLE. Thus, MAPP offers a broadly applicable method to facilitate the study of the cellular-degradation landscape in various cellular conditions and diseases involving changes in proteasomal degradation, including protein aggregation diseases, autoimmunity and cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...